Findings Video conference with Azure Virtual Desktop using Teams

Introduction
Over the last couple of years, there has been an impressive flux with many businesses and institutions adopting and relying on large-scale remote working and remote learning environments to maintain workforce and learning continuity. During this time, it’s generally been recognised that this type of remote working/learning has been quite successful, with many businesses and institutions continuing remoting working/learning practices or introducing hybrid models with a combination of remote and office work for their staff.
One of the reasons why remote working/learning has been successful is the availability of supporting technologies that have delivered a high standard of human communication and engagement across large numbers of workers or students/faculty in remote environments. Video conferencing applications, which includes video conferencing, screen sharing, IMs and more, are such technologies that have contributed to viable remote working/learning environment success.
But to use these applications to their fullest potential, a robust IT infrastructure is also a must. Many large enterprise companies, as well as SMB and other institutions have centralised their IT environment into virtualized desktop infrastructure (VDI), either as an on-premises solution or as a managed-service by cloud service providers (CSP). Centralizing resources, applications and data into a single infrastructure allows for better IT management and security of vital resources and data which can help improve workforce productivity, data security and IT efficiencies.
Investigation overview
This blog details a recent technical investigation where popular video conferencing applications are deployed on AMD-based Azure instances to determine the performance of each application, the number of deployable users in a multi-session environment, and the user experience each person would receive. The AMD-based instances includes both CPU-only based instances and CPU+GPU based instances to understand the impact of GPU-enabled resources to the density and experience of the users.
So next let’s look at the various parameters for the investigation.
The Lab:
For the investigation, we had three areas of consideration:
![]() | ![]() | ![]() |
1) Azure session host | 2) Application | 3) End-point devices |